The Modus Collections API provides a robust way to store, retrieve, and search
through data using both natural language and vector-based search methods. By
leveraging embeddings, developers can enable semantic and similarity-based
searches, improving the relevance of search results within their applications.
For example, with natural language similarity, if you search for a product
description like ‘sleek red sports car’, the search method returns similar
product descriptions such as “luxury sports car in red” or ‘high-speed car with
sleek design’.
Understanding key components
Collections: a collection is a structured storage that organizes and stores
textual data and associated metadata. Collections enable sophisticated search,
retrieval, and classification tasks using vector embeddings.
Search Methods: a search method associated with a collection, defines how to
convert collection items into a vector representation and provides indexing
parameters.
Vector embeddings: for vector-based search and comparison, Modus converts
each item in the collection into a vector representation called embedding.
By embedding data, you enable powerful natural language and similarity-based
searches.
Modus runtime automatically compute the embeddings, according to your
configuration, when you add or update items.
Initializing your collection
Before implementing search, ensure you have
defined a collection in the app manifest. In this
example, myProducts is the collection used to store product descriptions.
First, we need to populate the collection with items (for example, product
descriptions). You can insert individual or multiple items using the upsert
and upsertBatch methods, respectively.
Use upsert to insert a product description into the collection. If you don’t
specify a key, Modus generates a unique key for you.
func AddProduct(description string) ([]string, error) {
res, err := collections.Upsert(
"myProducts", // Collection name defined in the manifest
nil, // using nil to let Modus generate a unique ID
description, // the text to store
nil // we don't have labels for this item
)
if err != nil {
return nil, err
}
return res.Keys, nil
}
The search capability relies on a search method and embedding function. To
configure your search method.
Create an embedding function
An embedding function is any API function that transforms text into vectors that
represent their meaning in a high-dimensional space.
Embeddings functions must have the following signature:
package main
func Embed(text []string) ([][]float32, error) {
...
}
Modus computes vectors using embedding models. Here are a few examples:
Declare the model in the app manifest "models": {
// model card: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
"minilm": {
"sourceModel": "sentence-transformers/all-MiniLM-L6-v2", // model name on the provider
"provider": "hugging-face", // provider for this model
"connection": "hypermode" // host where the model is running
}
}
Create the embedding function using the embedding model:package main
import (
"github.com/hypermodeAI/functions-go/pkg/models"
"github.com/hypermodeAI/functions-go/pkg/models/experimental"
)
func Embed(text []string) ([][]float32, error) {
// "minilm" is the model name declared in the application manifest
model, err := models.GetModel[experimental.EmbeddingsModel]("minilm")
if err != nil {
return nil, err
}
input, err := model.CreateInput(text...)
if err != nil {
return nil, err
}
output, err := model.Invoke(input)
if err != nil {
return nil, err
}
return output.Predictions, nil
}
Declare the model in the app manifest "models": {
// model docs: https://platform.openai.com/docs/models/embeddings
"openai-embeddings": {
"sourceModel": "text-embedding-3-small",
"connection": "openai",
"path": "v1/embeddings"
}
},
"connections": {
"openai": {
"baseUrl": "https://api.openai.com/",
"headers": {
"Authorization": "Bearer {{API_KEY}}"
}
}
}
Create the embedding function using the embedding model:import (
"github.com/hypermodeAI/functions-go/pkg/models"
"github.com/hypermodeAI/functions-go/pkg/models/experimental"
)
func Embed(texts ...string) ([][]float32, error) {
// retrieve the model for OpenAI embeddings
// "openai-embeddings" is the model name declared in the app manifest
model, err := models.GetModel[openai.EmbeddingsModel]("openai-embeddings")
if err != nil {
return nil, fmt.Errorf("failed to get OpenAI embeddings model: %w", err)
}
// create input for the model using the provided texts
input, err := model.CreateInput(texts)
if err != nil {
return nil, fmt.Errorf("failed to create input for OpenAI embeddings: %w", err)
}
// invoke the model with the generated input
output, err := model.Invoke(input)
if err != nil {
return nil, fmt.Errorf("failed to invoke OpenAI embeddings model: %w", err)
}
// prepare the result slice based on the size of the output data
results := make([][]float32, len(output.Data))
// copy embeddings from output into the result slice
for i, d := range output.Data {
results[i] = d.Embedding
}
return results, nil
}
Declare the search method
With an embedding function in place, declare a search method in the
collection properties.
"collections": {
"myProducts": {
"searchMethods": {
"searchMethod1": {
"embedder": "minilm" // embedding function name
}
}
}
}
Implement semantic similarity search
With the products stored, you can now search the collection by semantic
similarity. The search] API computes an embedding for the provided text,
compares it with the embeddings of the items in the collection, and returns the
most similar items.
func SearchProducts(productDescription string, maxItems int) (*collections.CollectionSearchResult, error) {
return collections.Search(myProducts, searchMethods[0], productDescription, collections.WithLimit(maxItems), collections.WithReturnText(true))
}
The search response is a CollectionSearchResult containing the following fields:
collection: the name of the collection.
status: the status of the operation.
objects: the search result items with their text, distance, and score
values.
distance: a lower value indicates a closer match between the search query
and the item in the collection
score: a higher value (closer to 1) represents a better match
{
"collection": "myProducts",
"status": "success",
"objects": [
{
"key": "item-key-123",
"text": "Sample product description",
"distance": 0.05,
"score": 0.95
}
]
}
Search for similar Items
When you need to search similar items to a given item, use the searchByVector
API. Retrieve the vector associated with the given item by its key, then perform
a search using that vector.
func SearchSimilarProduct(productKey string, maxItems int) (*collections.CollectionSearchResult, error) {
vec, err := collections.GetVector(
"myProducts",
"searchMethod1",
productKey)
if err != nil {
return nil, err
}
return collections.SearchByVector(
"myProducts",
"searchMethod1",
vec,
collections.WithLimit(maxItems),
collections.WithReturnText(true)
)
}